

Available online at www.sciencedirect.com

Journal of Magnetic Resonance 177 (2005) 118-128

Journal of Magnetic Resonance

www.elsevier.com/locate/jmr

Increasing ¹⁴N NQR signal by ¹H–¹⁴N level crossing with small magnetic fields

Kent R. Thurber^{a,*}, Karen L. Sauer^{a,b}, Michael L. Buess^c, Christopher A. Klug^a, Joel B. Miller^a

^a U.S. Naval Research Laboratory, Washington, DC 20375, USA ^b Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030, USA ^c SFA, Lanham, MD 20785, USA

> Received 29 June 2005; revised 22 July 2005 Available online 24 August 2005

Abstract

NQR detection of materials, such as TNT, is hindered by the low signal-to-noise ratio at low NQR frequencies. Sweeping small (0-26 mT) magnetic fields to shift the ¹H NMR frequency relative to the ¹⁴N NQR frequencies can provide a significant increase of the ¹⁴N NQR signal-to-noise ratio. Three effects of ¹H-¹⁴N level crossing are demonstrated in diglycine hydrochloride and TNT. These effects are (1) transferring ¹H polarization to one or more of the ¹⁴N transitions, including the use of an adiabatic flip of the ¹H polarization during the field sweep, (2) shortening the effective ¹⁴N T_1 by the interaction of ¹H with the ¹⁴N transitions, (3) "level transfer" effect where the third ¹⁴N (spin 1) energy level or other ¹⁴N sites with different NQR frequency are used as a reservoir of polarization which is transferred to the measured ¹⁴N transition by the ¹H. The ¹⁴N NQR signal-to-noise ratio can be increased by a factor of 2.5 for one ¹⁴N site in diglycine hydrochloride (and 2.2 in TNT), even though the maximum ¹H frequency used in this work, 1116 kHz, is only 30% larger than the measured ¹⁴N frequencies (834 kHz for diglycine hydrochloride and 843 kHz for TNT).

Published by Elsevier Inc.

Keywords: NMR; NQR; Double resonance; Level crossing; ¹⁴N; TNT; Diglycine hydrochloride

1. Introduction

NQR detection of hidden materials, such as TNT (trinitrotoluene), has several favorable features. NQR is a bulk technique and can detect fully enclosed material, as long as the container does not completely block the RF magnetic field. Since the quadrupolar frequencies are specific to the crystal structure, false alarms are limited [1]. However, ¹⁴N NQR detection of TNT is hindered by the low signal-to-noise ratio at low NQR frequencies. To increase the signal-to-noise ratio, double resonance techniques have been applied to TNT [2–5]. Double resonance techniques can increase the signal, at the cost of requiring a magnetic field. Most of these techniques have used the ¹H nuclei as an indirect detector of the ¹⁴N resonance. An alternative approach is to measure the ¹⁴N NQR directly while using the ¹H nuclei to increase the ¹⁴N signal. One way to do this is to polarize the ¹H at high field and transfer the polarization to the ¹⁴N by energy level crossings as the magnetic field is reduced. This basic level-crossing technique has been successfully tested on a few nitrogen-containing compounds [5–7].

In these experiments, we use small magnetic fields to explore the basic level-crossing technique and other related methods that use the neighboring ¹H to

^{*} Corresponding author. Fax: +1 301 496 0825.

E-mail addresses: thurberk@niddk.nih.gov, kentt@alum.mit.edu (K.R. Thurber).

^{1090-7807/\$ -} see front matter. Published by Elsevier Inc. doi:10.1016/j.jmr.2005.07.016

increase the measured ¹⁴N NQR signal. The small (0-26 mT) magnetic fields are easily provided by a simple home-built solenoid. We demonstrate the significant increase of the ¹⁴N NQR signal in a test compound, diglycine hydrochloride [8], and in TNT. The demonstrated effects are (1) transferring ¹H polarization to one or more of the ¹⁴N transitions, including an adiabatic flip of the ¹H polarization during the field sweep when beneficial, (2) shortening the effective ¹⁴N T_1 by the interaction of ¹H with the ¹⁴N transitions, (3) "level transfer" effect where the unmeasured third ¹⁴N (spin 1) energy level or other ¹⁴N sites with different NQR frequency are used as a reservoir of polarization which is transferred to the measured ¹⁴N transition by the ¹H. The best ¹⁴N NQR signal-to-noise ratio was achieved in both diglycine hydrochloride and TNT by using both effects 2 and 1: first, matching the ¹H Zeeman frequency to the measured ¹⁴N NQR frequency to shorten ¹⁴N T_1 , and then, transferring ¹H polarization to ¹⁴N at the other two level crossings. The signal-to-noise ratio for a fixed amount of time can be increased by a factor of 2.5 for the ¹⁴N site 2 of diglycine hydrochloride, and increased by 2.2 for the ¹⁴N signal near 843 kHz of TNT, even though the maximum ¹H frequency used in this work, 1116 kHz, is only 30% larger than the measured ¹⁴N frequencies (834 kHz for diglycine hydrochloride and 843 kHz for TNT).

2. Background

The quadrupolar Hamiltonian is [9]

$$\mathscr{H} = \frac{e^2 q Q}{4I(2I-1)} \left\{ 3I_Z^2 - I(I+1) + \frac{1}{2}\eta (I_+^2 + I_-^2) \right\}, \qquad (1)$$

where $eq = V_{ZZ}$, the largest component of the electric field gradient tensor in the principal axes frame, $\eta = (V_{XX} - V_{YY})/V_{ZZ}$, eQ is the quadrupole moment of the nucleus and *I* is the spin of the nucleus. As a spin 1 nucleus with $\eta \neq 0$ (η ranges from 0.17 to 0.30 in these samples), the ¹⁴N nucleus has three energy levels, given below with their associated eigenstates. The eigenstates are written in terms of the spin states of I_Z , where the *Z* axis is defined above by the quadrupolar principal axes frame.

$$E_{|Y\rangle} = hv_{\mathcal{Q}}\left(\frac{1+\eta}{3}\right); \quad |Y\rangle = \frac{1}{\sqrt{2}}(|+1\rangle + |-1\rangle),$$

$$E_{|X\rangle} = hv_{\mathcal{Q}}\left(\frac{1-\eta}{3}\right); \quad |X\rangle = \frac{1}{\sqrt{2}}(|+1\rangle - |-1\rangle), \quad (2)$$

$$E_{|Z\rangle} = hv_{\mathcal{Q}}\left(\frac{-2}{3}\right); \quad |Z\rangle = |0\rangle,$$

where

$$v_Q = \frac{3e^2 qQ}{4h}.$$
(3)

In our qualitative discussions of the level-crossing effects, we will often assume that $e^2qQ > 0$ and thus $v_Q > 0$. However, the sign of v_Q does not change the results of the levelcrossing effects given the approximations used in our later analysis in this article. From the three ¹⁴N energy levels, the three resulting frequencies are

$$v_{+} = |Y\rangle \rightarrow |Z\rangle = v_{\mathcal{Q}} \left(1 + \frac{\eta}{3}\right),$$
(4)

$$v_{-} = |X\rangle \to |Z\rangle = v_{\mathcal{Q}} \left(1 - \frac{\eta}{3}\right),$$
(5)

$$v_0 = |Y\rangle \to |X\rangle = v_Q \left(\frac{2\eta}{3}\right).$$
 (6)

The first basic effect that we can use to increase the ¹⁴N NOR signal-to-noise ratio is the transfer of polarization from the ¹H to the ¹⁴N at the magnetic fields where the ¹H Zeeman frequency is equal to one of the three ¹⁴N NQR frequencies [10]. A small DC magnetic field primarily changes the ¹H frequency, while the ¹⁴N NQR frequencies are just slightly shifted, broadening the NQR transitions in a powder sample [3,11]. This is for two reasons: first, because the gyromagnetic ratio is much larger for ¹H (42.6 MHz/T) than for ¹⁴N (3.08 MHz/T); and second, the ¹⁴N NQR energy levels do not shift to first order in the field [12] because the expectation value of the magnetic moment is zero in all directions. (The zero expectation value of the magnetic moment in the Z direction can be seen in the eigenstates given in Eqs. (2).) Because there are three ¹⁴N NQR frequencies, there are three magnetic fields where avoided energy level crossing occurs, as can be seen in Fig. 1. At these level crossings, the ¹H Zeeman

Fig. 1. Energy levels as a function of magnetic field for one ¹⁴N and one ¹H that are dipole-coupled. The energy states are labeled at the right (high field) side with the ¹⁴N state (X, Y, or Z) and the ¹H state (+ or –). The arrows indicate the three avoided energy level crossings, where the ¹H frequency equals one of the three ¹⁴N frequencies (ν_+ , ν_- , or ν_0). This specific example of the energy levels has the magnetic field along the ¹⁴N quadrupolar Z axis; and the internuclear vector is in the quadrupolar XZ plane and makes an angle of $\pi/3$ with the Z axis. The dipole coupling, $\gamma_H \gamma_N h/4\pi^2 r_{NH}^3$, is shown as 50 kHz, larger than estimated in these materials (7.3 kHz for glycine [13]), in order to show the avoided level crossings clearly. The ¹⁴N quadrupole coupling is that of site 2 of diglycine hydrochloride ($\nu_Q = 780$ kHz, $\eta = 0.21$).

frequency equals one of the three ¹⁴N NQR frequencies. If there was no ${}^{1}H{-}^{14}N$ dipole interaction, the energy levels would cross; with a dipole coupling, the energy levels avoid crossing each other with a minimum splitting determined by the strength of the dipole coupling. For our measurements of diglycine hydrochloride and TNT, these level crossings are roughly at 20 mT for v_+ , 17 mT for v_- , and 2.5 mT for v_0 . At a level crossing, efficient transfer of polarization between the ¹H transition and the corresponding ¹⁴N transition can occur via the ¹H-¹⁴N dipole interaction because the energies of the two transitions are equal. Generally, the sequence of these experiments is as follows (see Fig. 2). First, a small DC magnetic field is applied which polarizes the ¹H. Then, the magnetic field is swept down through the level crossings, transferring polarization to the ¹⁴N nuclei. If necessary, the field sweep can be paused at the level crossings to allow more time for polarization transfer. Finally, the ¹⁴N NQR signal is measured at zero field with a spin-lock, spin-echo (SLSE) sequence [14].

Fig. 2. NQR sequences: (A) spin-lock spin-echo (SLSE) pulse sequence used for ¹⁴N NQR at zero field, (B) continuous field sweep across ¹H $^{-14}$ N level crossings, (C) field sweep with stops at the level crossings, and (D) field sweep with RF magnetic field applied during the sweep to cause an adiabatic flip of ¹H polarization between level crossings.

3. Experimental

Two samples were used in these experiments: diglycine hydrochloride and trinitrotoluene (TNT). Diglycine hydrochloride, $2(C_2H_5O_2N) \cdot HCl$, was used as a test compound because it has ¹⁴N NQR frequencies close to those of TNT, a fast T_1 for rapid data collection, and ¹H bonded to the ¹⁴N (the NH₃ group) to provide significant ¹H-¹⁴N dipole coupling. There are 11/2 total ¹H per ¹⁴N. We should note that despite the term "diglycine" in the compound name, which often refers to compounds where the two glycine amino acids are chemically linked, diglycine hydrochloride has simply two unlinked molecules of glycine for every molecule of HCl. However, the two nitrogen sites in the two glycine molecules do have slightly different NQR frequencies. Each ¹⁴N crystal site has three ¹⁴N NQR frequencies, v_+ , v_- , and v_0 . The ¹⁴N NQR frequencies of both diglycine hydrochloride and the orthorhombic phase of TNT were matched as v_+ , v_- , v_0 triples (see Table 1) by measuring T_{2e} , the decay of the spin-lock spin-echo train. When the ¹H Zeeman frequency matches the v_0 ¹⁴N NQR frequency, T_{2e} decreases for the associated v_+ and v_- transitions [16]. All of the diglycine hydrochloride data in this article are from site 2 ($v_{+} = 834 \text{ kHz}$, $v_{-} = 725 \text{ kHz}$, $v_0 = 109$ kHz). The experiments used approximately 23 g diglycine hydrochloride from Sigma and were typically run for 3000 cycles (M, Fig. 2) or more, taking $\geq 15 \text{ min.}$

Trinitrotoluene, 2,4,6-(NO₂)₃C₆H₂(CH₃), has two crystalline forms, orthorhombic and monoclinic. Each crystal type has 6 nitrogen sites with different NQR frequencies (see Table 1) [16]. There are 5/3 total ¹H per ¹⁴N. Fig. 3 has low-resolution spectra of the v_+ and $v_$ frequencies of the TNT sample. The sample is roughly 40 mL (~25 g) of TNT flakes immersed in water for safety. It is primarily orthorhombic, but does contain some monoclinic component. The spectra shown (Fig. 3) were acquired in 6000 cycles (M, Fig. 2) or more (≥ 8 h). However, signal sufficient for reasonable spectra could be acquired in 1000 cycles.

The solenoid to provide the DC magnetic field is a hand-wound coil with a notch design [17]: two complete winding layers, with added extra turns at each end to increase homogeneity. The resulting coil (7 cm diameter, 11.5 cm length) provides 2.15 mT/A, with homogeneity of 0.2% for the diglycine hydrochloride sample shape and 1.5% for the longer TNT sample. The coil resistance is 1.2Ω and the inductance is 3 mH. The magnetic field control for the level-crossing sequences uses a 12 bit digital value is converted to an analog voltage, and that voltage determines the current output of a Kepco power supply. The maximum field is limited to 26 mT by the 12 A maximum output of the power supply, while the sweep rate is limited to $\sim 2.5 \text{ mT/ms}$ by the coil

Table 1 ¹⁴N NQR frequencies (in kHz) for orthorhombic and monoclinic TNT and diglycine hydrochloride

	v_+ (kHz)	v_{-} (kHz)	v_0 (kHz)	
Orthorhombic	838.8	742.7	96.1	
TNT	843.6	754.0	89.6	
	847.4	713.3	134.1	
	849.5	742.7	106.8	
	863.4	770.5	92.9	
	869.4	717.4	152.0	
Monoclinic	838.3	740.7 or 744.3	97.6 or 94.0	
TNT	844.4	753.6	90.8	
	845.3	715.2	130.1	
	849.9	740.7 or 744.3	109.2 or 105.6	
	861.3	770.3	91.0	
	871.3	715.2	156.1	
Diglycine	982	815	167	Site 1
hydrochloride	834	725	109	Site 2

TNT frequencies are at $13 \,^{\circ}$ C, interpolated or extrapolated from [15]. Diglycine hydrochloride frequencies from this work are at room temperature.

Fig. 3. ¹⁴N NQR low-resolution spectra from TNT in water, v_+ lines (838–871 kHz) and v_- lines (713–770 kHz). Also shown are the expected line positions for orthorhombic (+) and monoclinic (×) TNT, extracted from [15] (see Table 1). The relative intensities of different lines are strongly affected by the bandwidth of the spin-lock spin-echo (SLSE) sequence. Spectra taken at 13–16 °C.

inductance and the sweep response of the power supply. The magnet is water cooled with coiled copper tubing. For the TNT experiments, the sample region was also water cooled with copper tubing. The TNT sample had a temperature gradient of ≤ 2 °C across the sample when the magnet was warm. Experimental sequences with and without magnetic field were always interleaved, so that the signal change is compared between sequences done in the same experiment. This avoids any effect of

4. Results

4.1. Level-crossing effect

Fig. 4 shows the diglycine hydrochloride ¹⁴N NOR signal measured after a magnetic field sweep, normalized by the signal measured without any magnetic field sweep. The DC magnetic field was applied for 500 ms $(>4^{14}N T_1)$ in order to include just the level-crossing effect and not the T_1 effects discussed later. The results are plotted as a function of the applied magnetic field (in units of the ¹H frequency). With the highest field sweep used (26 mT), the signal for v_+ is 60% larger than without any field sweep. For TNT, we found that simply sweeping the magnetic field at about 100 kHz/ms (2.5 mT/ms) through the level crossings gave a minor signal increase (20%). However, if the field sweep is paused at each of the level crossings (Fig. 2C), the signal increase is larger. The need to spend more time at the level crossing to achieve polarization transfer has been seen in other ¹⁴N double resonance experiments on samples with NO₂ groups [18]. This is presumably a result of weak ¹H-¹⁴N dipole couplings in TNT. We estimate

Fig. 4. ¹⁴N NQR signal after magnetic field applied for 500 ms (\gg ¹⁴N T_1) (normalized by signal without any field sweep) as a function of the magnetic field strength (in units of the ¹H frequency). Data shown for diglycine hydrochloride site 2 ¹⁴N, v_+ (\bullet) (834 kHz), and v_- (\Box) (725 kHz) (sequence Fig. 2B). The signal increase when a RF field is applied at 607 kHz to produce an adiabatic passage of the ¹H nuclei during the field sweep is shown for v_+ (\blacktriangle) and v_- (\diamondsuit) (sequence Fig. 2D). Lines show calculations of signal increase from transfer of ¹H polarization: dashed line, adiabatic avoided level crossings with one ¹H and one ¹⁴N; dotted line, spin temperature equilibration at level crossings with 5 ¹H per ¹⁴N; solid line, spin temperature model with higher two crossings (at 834 and 725 kHz) only 25% effective. The total cycle time was 525 ms. Data were taken at 33 °C (v_+), 37–43 °C (v_-), and 31 °C (adiabatic passage).

that the ${}^{1}\text{H}{-}^{14}\text{N}$ dipole couplings in TNT are ≤ 500 Hz, more than 10 times smaller than estimated for pure glycine (7.3 kHz) [13]. We found that spending 100 ms or more at the level crossing provided good polarization transfer for TNT. For a sweep from 26 mT (1116 kHz) with 100 ms stops at all the level crossings for the four orthorhombic lines around 843 kHz, the total TNT signal around 843 kHz at 15 °C was a factor of 2.1 times larger than without any field sweep. The 12 stops for the three level crossings of each of the four lines around 843 kHz were reduced to seven stops by stopping only once for closely spaced lines. The stops were at 854 kHz for the 4 v_+ crossings (shifted from 843 kHz to account for magnetic field broadening), 754, 743 (2 lines), and 715 kHz for the v_{-} crossings, and 132, 107, and 93 kHz (2 lines) for the v_0 crossings.

This basic level-crossing effect has been reviewed several times [6,10,11,19–21], though often from the point of view of measuring the ¹H NMR, rather than the ¹⁴N NQR. One model for the level-crossing effect is from a spin temperature approach [10]. In this model, at each level crossing, when the ¹H Zeeman frequency is equal to one of the ¹⁴N NQR frequencies, those two transitions come into thermal equilibrium with each other. We derive the spin temperature model as follows. Let $N_{\rm H}$ and $N_{\rm N}$ be the number of interacting ¹H and ¹⁴N nuclei. The initial populations of the two ¹H levels are approximated as $\frac{N_{\rm H}}{2}(1-x)$ and $\frac{N_{\rm H}}{2kT}(1+x)$ in the high temperature limit with $x = \frac{\hbar v_{\rm H}}{2kT}$. $v_{\rm H}$ is the frequency where the ¹H were in thermal equilibrium with temperature *T*. The initial populations of the ¹⁴N levels are $\frac{N_{\rm N}}{3}(1+a)$, $\frac{N_{\rm N}}{3}(1+b)$, and $\frac{N_{\rm N}}{3}(1+c)$, for the $|Y\rangle$, $|X\rangle$, and $|Z\rangle$ states, respectively, with

$$a = -\frac{E_{|Y\rangle}}{kT} = -\frac{hv_Q(1+\eta)}{3kT},$$
(7)

$$b = -\frac{E_{|X\rangle}}{kT} = -\frac{hv_{\mathcal{Q}}(1-\eta)}{3kT},\tag{8}$$

$$c = -\frac{E_{|Z\rangle}}{kT} = \frac{2hv_Q}{3kT}.$$
(9)

Using conservation of the number of ¹H and ¹⁴N nuclei, conservation of the energy, and the high temperature limit, this model leads to equations for the new population differences after the level crossing, x_{new} , a_{new} , b_{new} , and c_{new} . For example, the following equations are for a level crossing with the v_+ ¹⁴N frequency [10,19]

$$p = \frac{N_{\rm H}}{N_{\rm H} + \frac{2}{3}N_{\rm N}},\tag{10}$$

$$x_{\text{new}} = (1 - e(1 - p))x + e(1 - p)\left(\frac{c - a}{2}\right),\tag{11}$$

$$a_{\text{new}} = -epx + \left(1 - \frac{1}{2}ep\right)a + \frac{1}{2}epc, \qquad (12)$$

$$b_{\rm new} = b, \tag{13}$$

$$c_{\text{new}} = epx + \frac{1}{2}epa + \left(1 - \frac{1}{2}ep\right)c.$$
 (14)

The parameter, e, describes whether the transition comes into complete thermal equilibrium. If e = 1, the ¹H and the ¹⁴N transition have fully equilibrated; if e = 0, nothing happens at the level crossing. The factor of 2/3 in p arises from the fact that the ¹H are coming into equilibrium with one of the ¹⁴N transitions, which involves two out of the three ¹⁴N energy levels, thus only $\approx 2/3$ of the ¹⁴N nuclei are involved in the high temperature limit. In this model of a level crossing, two of the ¹⁴N energy levels thermally equilibrate with the two ¹H energy levels, while the population of the third ¹⁴N energy level does not change. The other two level crossings at v_{-} and v_{0} result in similar equations when derived with the assumptions of the spin temperature model. The results for several consecutive level crossings can be modeled by using the new values of x, a, b, and cas the initial conditions for the next level crossing. An example of the calculations with the spin temperature model is shown in Fig. 5. To first order in $N_{\rm N}/N_{\rm H}$ and the population differences, and assuming complete thermal equilibrium for all three level crossings, the ¹⁴N NQR signal after a field sweep, normalized by the signal without any field sweep, S_{new}/S , is given in [6],

$$\left(S_{\text{new}}/S\right)_{\nu_{+}} = \frac{1}{8} \left[13 \frac{\nu_{\text{H}}}{\nu_{+}} - 2 \frac{\nu_{-}}{\nu_{+}} + 1 + \left(9 + 8 \frac{\nu_{-}}{\nu_{+}} - 21 \frac{\nu_{\text{H}}}{\nu_{+}}\right) \frac{N_{\text{N}}}{N_{\text{H}}} \right],\tag{15}$$

$$(S_{\text{new}}/S)_{\nu_{-}} = \frac{1}{8} \left[5\frac{\nu_{\text{H}}}{\nu_{-}} + \frac{\nu_{+}}{\nu_{-}} - 2 + \left(4 + 3\frac{\nu_{+}}{\nu_{-}} - 3\frac{\nu_{\text{H}}}{\nu_{-}} \right) \frac{N_{\text{N}}}{N_{\text{H}}} \right],$$
(16)

$$(S_{\text{new}}/S)_{\nu_0} = \frac{1}{8} \left[8 \frac{\nu_{\text{H}}}{\nu_0} + \left(6 \frac{\nu_+}{\nu_0} + 4 \frac{\nu_-}{\nu_0} - 18 \frac{\nu_{\text{H}}}{\nu_0} \right) \frac{N_{\text{N}}}{N_{\text{H}}} \right].$$
(17)

Without going through the detailed calculations, the general nature of the change in signal for the ¹⁴N transitions can be seen qualitatively (see Fig. 5). As the field is reduced from high field with polarized ¹H, the first level crossing is with the highest ¹⁴N NQR frequency $(v_+ = |Y\rangle \rightarrow |Z\rangle)$. At this level crossing, the population of $|Z\rangle$ is increased and $|Y\rangle$ decreased. At each level crossing, the ¹H polarization is reduced by the amount of energy transfer to the ¹⁴N. However, the ¹H polarization is reduced by very little if there are many ¹H per ¹⁴N. At the second level crossing with the middle ¹⁴N NQR frequency $(v_- = |X\rangle \rightarrow |Z\rangle)$, the population of $|Z\rangle$ is again increased and $|X\rangle$ decreased. At the third level crossing with the lowest ¹⁴N NQR frequency $(v_0 = |Y\rangle \rightarrow |X\rangle)$, the population of $|X\rangle$ is now increased, and $|Y\rangle$ decreased. For the $v_+ = |Y\rangle \rightarrow |Z\rangle$ transition, the 14 N energy Normalized population differences (N/N_N - 1/3) x 10¹⁰

levels Initial $ Y\rangle = \frac{a/3 = -300}{ X\rangle}$ $ X\rangle = b/3 = -200$	After $v_{+} = Y_{>} \rightarrow Z_{>}$ level crossing \checkmark -500 -200	After $v = X > \rightarrow Z >$ level crossing -500 \checkmark -350	After $v_0 = Y \rangle \rightarrow X \rangle$ level crossing \checkmark -1025 \blacklozenge +175
Z> c/3 = +500	♦ +700	♦ +850	+850

Fig. 5. Example of the ¹⁴N energy level population differences during a level-crossing field sweep using the spin temperature model. The population differences given are the differences from the uniform 1/3 of the nuclei in each energy level. The differences are normalized by the total number of ¹⁴N nuclei ($N_{\rm N}$) and are multiplied by 10¹⁰. For numerical simplicity, this example is for $v_Q = 750$ kHz, $\eta = 0.20$, T = 160 K, the ¹H polarized at $v_{\rm H} = 1200$ kHz, many protons per nitrogen ($N_{\rm N}/N_{\rm H} \rightarrow 0$), and complete thermal equilibration between ¹H and ¹⁴N at the level crossings. At each level crossing, the nitrogen transition involved polarizes to a normalized population difference of 1200×10^{-10} . The resulting theoretical signal increase is (850 + 1025)/(500 + 300) = 2.34 for v_+ , (850–175)/(500 + 200) = 0.96 for v_- , and (175 + 1025)/(-200 + 300) = 12 for v_0 .

population of $|Z\rangle$ has been increased twice and $|Y\rangle$ decreased twice, so the signal is increased as seen in Fig. 4. For the $v_{-} = |X\rangle \rightarrow |Z\rangle$ transition, the population of $|Z\rangle$ has been increased twice, but the $|X\rangle$ population has been shifted in both directions, so qualitatively, the signal change could be either positive or negative, and is negative in the low field used in our experiments as seen in Fig. 4. For the $v_0 = |Y\rangle \rightarrow |X\rangle$ transition, the population of $|Y\rangle$ has been decreased twice, but the $|X\rangle$ population has been shifted in both directions, so qualitatively, the signal change could be either positive or negative. However, the last level crossing is with the v_0 transition, so after the level crossings, the v_0 transition is in equilibrium with the proton polarization. This can be seen in the first term of Eq. (17), where $(S_{new}/$ $S)_{v_0} = v_H/v_0$ for many ¹H per ¹⁴N (N_N/N_H small). So generally, the v_0 signal will be strongly increased, for example by a factor of 12 for the case calculated in Fig. 5.

The v_{-} signal decreases for a complete set of level crossings with our small magnetic fields. However, if one desires an increase in the v_{-} signal, this can be done by an adiabatic flip of the ¹H polarization during the field sweep (see sequence D in Fig. 2). A RF magnetic field is applied at a frequency in between the v_{-} and v_{0} frequencies. The v_{+} and v_{-} level crossings are done normally with positive ¹H polarization, which benefits the NQR v_{-} signal. Then, as the field sweeps down, the ¹H nuclei pass through resonance with the RF field. The result is an adiabatic rapid passage done by sweeping the magnetic field, rather than sweeping the RF frequency. The ¹H polarization is flipped to negative by the passage. The v_{0} level crossing is then beneficial to the v_{-} signal (and detrimental to the v_{+} signal). The result of

such a field sweep with RF is shown by the second set of symbols (\blacktriangle , \diamondsuit) at 1116 kHz in Fig. 4. The v_- signal (\diamondsuit) is increased, and the v_+ signal (\bigstar) is not increased. Thus, for diglycine hydrochloride, either v_+ or v_- signal can be increased with a DC field sweep: v_+ without a RF field, and v_- with a RF field. For TNT, the v_- signal can be increased simply by choosing to stop and allow time for polarization transfer only at the level crossings that are beneficial to the v_- signal. This implies not stopping at the v_0 level crossing. For example, the TNT v_- signal at 743 kHz was increased by 80% by a field sweep from 1116 kHz field that just stopped at v_- (743 kHz) (100 ms stop, 5 s cycle time at 15 °C).

The simple spin temperature model fits the diglycine hydrochloride data (Fig. 4) well for the lower field sweeps which only cross the lowest frequency (v_0) level crossing. For field sweeps which cross the two higher field level crossings, an acceptable fit to the data results if the two higher level crossings are assumed to proceed only 25% of the way to equilibrium. Another way to show that the two higher level crossings are not providing very much signal enhancement under these conditions is to measure the enhancement without crossing the lowest level crossing (v_0) . As mentioned earlier, a full field sweep from 1116 kHz to 0 increases the v_+ signal by 60% relative to measurement at 0 field without a field sweep. We can also sweep the field from 1116 kHz and stop at 300 kHz (above the v_0 level crossing at 109 kHz). Then, measuring the ¹⁴N NQR at a field of 300 kHz (7 mT) shows an increase of the v_{\pm} signal by only 13% relative to measurement at 7 mT field without a field sweep. These results demonstrate 13% signal benefit from the two higher level crossings, and approximately 60%-13% = 47% from the lowest crossing. The spin temperature model for 5 ¹H per ¹⁴N would suggest 42% signal benefit from the two higher level crossings, and 91%-42% = 49% from the lowest crossing. This again clearly suggests that the lowest level crossing is providing signal enhancement as expected from the spin temperature model, but that the higher two level crossings are not. The most likely reason for the low polarization transfer at the higher two level crossings seems to be that the field sweep is too fast to allow full thermal equilibrium between the ¹H and ¹⁴N transitions. However, because of the fast ¹H T_1 (7–10 ms) of diglycine hydrochloride, stopping or slowing the field sweep to allow for full thermal equilibrium between the ¹H and ¹⁴N, also results in more ¹H relaxation during the sweep. We should note that even for complete thermal equilibrium, the most important level crossing is the lowest crossing (v_0) , for our very small magnetic fields.

The simple spin temperature model ignores any effects from energy in the dipole couplings [22], and any effects caused by a finite number of coupled spins. Another useful model for the level crossing with different assumptions is an energy level avoided crossing

model. Fig. 1 shows the energy levels of one ¹⁴N and one ¹H as a function of magnetic field. The energy level crossings become avoided crossings because of the dipole coupling between the ¹⁴N and the ¹H. First, the magnetic field is set above the level crossings, and the populations of the energy levels allowed to come into thermal equilibrium. Then as the field is reduced, the populations will follow the energy levels if relaxation effects can be neglected and the field sweep is slow enough to be adiabatic. To be specific, the populations of the $|Y,+\rangle$ and $|X,+\rangle$ states will end up in the $|Y\rangle$ ¹⁴N state, $|Z,+\rangle$ and $|Y,-\rangle$ populations will end up in the $|X\rangle$ state, and $|X,-\rangle$ and $|Z,-\rangle$ populations will end up in the $|Z\rangle$ state. As a result, the ¹⁴N polarization is increased at zero field. On the other hand, a field sweep fast enough to be completely diabatic will not polarize the ¹⁴N at all. For a completely diabatic sweep, the populations of the $|Y,+\rangle$ and $|Y,-\rangle$ states will end up in the $|Y\rangle^{14}$ N state, and similarly for $|X\rangle$ and $|Z\rangle$. In this case, the ¹⁴N polarization does not benefit from the ¹H polarization.

The adiabatic condition can be expressed generally as [22]

$$A = \frac{\left(\Delta \omega_{\min}\right)^2}{\frac{\mathrm{d}\omega}{\mathrm{d}t}} \gg 1,\tag{18}$$

where $\Delta \omega_{\min}$ is the smallest frequency difference between the states and $d\omega/dt$ is the rate of change of the frequency. Of course, the probability of an adiabatic transition can be more precisely specified [23], but that is beyond the scope of this article. In our case, $\Delta \omega_{\min}$ is roughly 2π times the dipole frequency, $v_{\rm NH}$. The splitting, $\Delta \omega_{\min}$, will depend on the angle between the magnetic field and the dipole coupling axis, and so will vary for different crystallites in the powder. Another way of looking at this adiabatic condition is that the time spent in the level crossing region, $2\pi v_{\rm NH}/(d\omega/dt)$, must be long relative to the characteristic time for the dipole interaction to operate, $1/v_{\rm NH}$ [24].

$$\frac{2\pi\nu_{\rm NH}}{\frac{d\omega}{dt}} \gg \frac{1}{2\pi\nu_{\rm NH}}.$$
(19)

For pure glycine, the ¹H-¹⁴N dipole coupling was estimated as 7.3 kHz [13]. The sweeping magnetic field produces a change in the ¹H frequency of approximately 100 kHz/ms,so the adiabatic parameter is $\approx (2\pi \cdot 7.3 \times 10^3)^2 / (2\pi \cdot 100 \times 10^6) = 3$ for diglycine hydrochloride. For TNT, the dipole couplings are estimated to be ≤ 500 Hz, more than 10 times smaller than in diglycine hydrochloride. This results in an estimated adiabatic parameter of $A \leq 0.02$, so A is clearly not $\gg1$ for TNT. Thus, in this adiabatic model, the diglycine hydrochloride experiments are expected to be borderline adiabatic, while for TNT the level crossings during the swept field will not be adiabatic. This is consistent with the observation that stopping at the level crossings is required for significant polarization transfer to occur in TNT.

The connection between the avoided level crossing and spin temperature models can be made. The spin temperature model with complete thermal equilibration approaches, in the limit of many coupled spins and high temperature, the result for equalizing the populations of the pairs of energy levels that almost cross at each avoided level crossing. The spin temperature model can result naturally if the relaxation is fast enough to equalize the populations between the energy levels when split by the ¹H⁻¹⁴N dipolar coupling only, but the relaxation is negligible when the energy splitting is larger. The relaxation of the ¹H–¹⁴N dipolar order may happen by interactions between the ¹H via the ¹H–¹H dipolar coupling. The spin temperature model is thus most appropriate when the relaxation is fast relative to the level-crossing time at frequencies comparable to the dipolar coupling. If the relaxation is slow, an avoided level-crossing model seems more appropriate.

4.2. T_1 effects

A second effect of the ¹H nuclei that can be used to increase the ¹⁴N NQR signal is a shortening of the effective ¹⁴N T_1 . Our two materials allow two different regimes to be studied: ¹H $T_1 < {}^{14}$ N T_1 , and ¹H $T_1 \sim {}^{14}$ N T_1 . The first case applies to the site 2 ¹⁴N of diglycine hydrochloride. Site 2 ¹⁴N of diglycine hydrochloride has a T_1 of roughly 100 ms for v_+ and v_- [25] (v_+ T_1 \approx 115 ms, $v_ T_1 \approx$ 105 ms at room temperature, 22– 23 °C). The site 1 ¹⁴N and the ¹H both have T_1 's roughly 10 ms. The ¹H T_1 of 7.8 \pm 1.5 ms at 607 kHz and 9.6 \pm 1.5 ms at 1116 kHz was measured indirectly at 23–26 °C. The sequence used is shown in Fig. 6A.

Since the ¹H T_1 is much shorter than the site 2 ¹⁴N T_1 , matching the frequencies at a level crossing shortens the effective T_1 between those two ¹⁴N energy levels, as long as the ¹H–¹⁴N dipole coupling is strong enough to provide a sufficiently rapid exchange of energy. Effectively, the ¹⁴N can equilibrate to the lattice temperature by a two step connection [11]. For the first step, the 1 H relax with a fast T_1 to the lattice temperature. For the second step, the ¹⁴N equilibrate with the ¹H nuclei via the $^{1}\text{H}^{-14}\text{N}$ dipole coupling. The recovery of the v_{+} signal after saturation when the ¹H frequency is matched to various ¹⁴N frequencies can be seen in Fig. 7A. The shortest effective T_1 is when the ¹H frequency is matched to the measured ¹⁴N frequency, but there are significant effects for matching to the other two ¹⁴N frequencies. The shortening of the ¹⁴N T_1 is also seen in Fig. 8, where the entire cycle time of the sequence shown as Fig. 2B has been reduced to 60 ms (14 N T_1). Clear peaks are seen at the level crossings where the effective ¹⁴N T_1 has been reduced (thus increasing the signal seen with the 60 ms cy-

Fig. 6. Sequences used for indirect ¹H T_1 measurements: (A) sequence used for diglycine hydrochloride. With magnetic field on, saturate ¹H, then vary time for repolarization before the ¹H-¹⁴N level crossings. ¹H polarization seen indirectly as variation in the increase of ¹⁴N v_+ signal from thermal equilibrium (or decrease of v_{-} signal). ¹⁴N is allowed to fully relax between measurements. (B) Sequence used for TNT. Polarize ¹H for a variable length of time, then the field is swept directly to 0 for ¹⁴N v_+ saturation (in a time \ll ¹H T_1 at zero field). The field is increased to the v_+ level crossing to transfer polarization from the ¹H to ¹⁴N. The field is swept back to 0 to measure transferred polarization at v_+ . (C) Sequence used to indirectly measure ¹H T_1 at zero field for TNT. ¹H is polarized with magnetic field, then the field is swept down to zero. Next, a variable amount of time is spent relaxing at zero field. Then the ${}^{14}N$ v_+ is quickly saturated, before going to the v_0 level crossing to transfer polarization from the ¹H to ¹⁴N. Finally, the field is swept back to 0 to measure transferred polarization at v_+ .

cle time), which were not seen in Fig. 4 when the cycle time was 525 ms (>4 T_1 for ¹⁴N). This shortening of the effective ¹⁴N T_1 helps increase the signal-to-noise for a fixed amount of time. The best sequence that we found for diglycine hydrochloride was to sweep the magnetic field as follows. First, a 16 ms sweep to 727 kHz (v_{-}) where the ¹H help to relax the v_{-} transition. Second, a 10 ms sweep to the maximum field (1116 kHz) to polarize the ¹H. Third, a 10 ms sweep to 844 kHz (v_{+}) where the ¹H transfer polarization and help to relax the v_{+} transition. Finally, a 15 ms sweep to 0 field. Then the v_+ signal was measured. These times include both the time spent to change the field (5–15 ms, depending on the amount of field change), and the time spent sitting at the magnetic field. The total cycle time including the SLSE measurement was 70.1 ms. Part of the benefit to the signal-to-noise ratio is from the short cycle time

Fig. 7. (A) v_+ signal recovery after SLSE saturation for diglycine hydrochloride: ×, without any field sweep; \blacklozenge , \blacklozenge , and \Box , with field sweep to v_0 , v_- , and v_+ level crossings, respectively. (B) Ratio of signal with field sweep to signal without any field sweep, for data from part A. Data were taken at 25–27 °C.

Fig. 8. ¹⁴N NQR signal after magnetic field applied for 35 ms (<¹⁴N T_1) (normalized by signal without any field sweep) as a function of the magnetic field strength (in units of the ¹H frequency). Data shown for diglycine hydrochloride site 2 ¹⁴N, v_+ (\bullet) (834 kHz), and v_- (\Box) (725 kHz) (Sequence Fig. 2B). Triangles (\blacktriangle) show the effect on the v_- NQR signal of field sweeps which alternately sweep on one cycle to the v_+ level crossing (\bigstar at 844 kHz on the *x*-axis), and then sweep on the next cycle to near the v_0 level crossing (\bigstar 's near 109 kHz on the *x*-axis). The total cycle time was 60 ms, and the data were taken at 29–33 °C. Error bars are roughly the symbol size, and lines are drawn to guide the eye.

which allows an increased number of cycles to average. For the NQR measurement without a field sweep, the cycle time with the best signal-to-noise was 135.1 ms, while 96.1 and 193.1 ms cycle times had signal-to-noise a few percent worse. This reflects the optimal cycle time for the unperturbed ¹⁴N T_1 of \approx 115 ms. The benefit of the decreased cycle time used with the field sweep is included in the signal-to-noise ratio for a fixed amount of time by dividing the signal per cycle by the square root of the cycle time. Including both the increased signal per cycle

and the reduced cycle time, the field sweep sequence provided a signal-to-noise ratio for a fixed amount of time 2.5 times better than without a magnetic field sweep. While this sequence was the best measured for the ¹⁴N site 2 of diglycine hydrochloride, other variations that included brief stops at the level crossings had increased signals that differed by only a few percent.

For TNT, the ¹H T_1 varies significantly with frequency [2]. The long ¹⁴N and ¹H T_1 relaxation times result in long experiment times for measuring the TNT ¹H T_1 by the same methods as we used for diglycine hydrochloride. But because of the small amount of ¹H-¹⁴N interaction for TNT during a fast field sweep, we could use different sequences to measure the ¹H T_1 indirectly in TNT (see Figs. 6B and C). The ¹H T_1 is roughly 0.45 s at zero field, 10 s at 550 kHz, and 11 s at 1116 kHz at 14–17 °C. These measurements of ¹H T_1 are consistent with [2], which quoted T_1 values at 25 °C: ~ 0.5 s at zero field, increasing to 4.6 s at 200 kHz, and about 30 s at 0.8 T = 34 MHz. The ¹⁴N T_1 ranges from 8 to 14 s for the four lines around 843 kHz at zero field and 14 °C, and is ≈ 9 s for the same four lines averaged together at 13 mT = 554 kHz and 16 °C [25]. Since the ¹H T_1 is not shorter than the ¹⁴N T_1 at the upper level crossings, matching the v_+ level crossing with initially unpolarized ¹H did not shorten the effective ¹⁴N T_1 significantly. However, because the ¹H T_1 at zero field is 0.45 s, the ¹⁴N NQR measurement at zero field can be done in less than the ¹H T_1 so that the ¹H polarization from high field does not fully relax at zero field. The remaining ¹H polarization can be used on the next field sweep cycle. At the beginning of the next field sweep cycle, the magnetic field is turned on, and the ¹H frequency is matched to one of the ¹⁴N NQR frequencies. The unrelaxed ¹H polarization can then be transferred to the ¹⁴N nuclei, which have been saturated by the NQR measurement. This helps shorten the effective T_1 recovery of the ^{14}N . When the ¹H frequency was matched to the ¹⁴N ν_+ region around 843 kHz, with the ¹⁴N NQR measurements at zero field taking only 90 ms, the effective ¹⁴N T_1 was only 4 s. This shortening of the effective ¹⁴N T_1 plus stopping at the v_{-} and v_{0} level crossings provided a signal-to-noise ratio increase for a fixed amount of time of a factor of 2.2. Fig. 9 also shows a factor of 2.2 increase of the signal-to-noise ratio when both cycle times are fixed at 5 s, rather than varied to optimize the signal-to-noise. This increase by a factor of 2.2 for the TNT signal-to-noise ratio is not that much larger than the factor of 2.1 mentioned previously from using the maximum field available (26 mT) with the level crossings, but here we have used only 20 mT field.

4.3. Effects of other ¹⁴N energy levels

A third effect that can be exploited with small magnetic fields is to use the polarization that remains in

Fig. 9. TNT ¹⁴N NQR low-resolution spectra, with (solid line) and without (dotted line) field sweep, measured at 843 kHz with both cycle times set at 5 s. The two spectra are taken with the same number of scans to illustrate the signal enhancement. The total signal integrated over the spectra with the field sweep has increased by a factor of 2.2. For the field sweep, the field is set to the v_+ level crossing (854 kHz to account for field shift of frequencies) for 4.4 s, then the field is swept down with 100 ms stops at the v_- level crossings (754, 743, and 715 kHz) and the v_0 level crossings (132, 107, and 93 kHz). The ¹⁴N NQR measurement is done at zero field in 55 ms (<¹H T_1 at zero field). Spectra taken at 15 °C.

¹⁴N energy levels that have not been measured. The ¹H nuclei can be used to transfer some of this polarization to the measured transition. For example, measurement of one of the ¹⁴N transitions tends to saturate that transition, which equalizes the population in the two energy levels involved in the transition. However, the population of the third ¹⁴N energy level has not changed as long as the ¹⁴N T_1 relaxation has not been significant. One sequence to demonstrate this is to field sweep to match v_+ and then measure v_- at zero field, and then quickly (\leq^{14} N T_1) field sweep to match v_0 and again measure v_{-} at zero field (see \blacktriangle 's Fig. 8). The v_{+} field sweep provides a small increase of the v_{-} signal, while also polarizing the v_{+} transition, and thus reducing the population in the $|Y\rangle$ state. The population of the $|Y\rangle$ state mostly remains the same during the v_{-} measurement because the v_{-} transition does not involve the $|Y\rangle$ state and the cycle time is kept less than the 14 N T_1 . During the subsequent v_0 field sweep, the thermal equilibration of the ¹H transition and the ¹⁴N v_0 transition transfers some of the population from the $|X\rangle$ state to the $|Y\rangle$ state, thus enhancing the v_{-} signal (see \blacktriangle 's around 100 kHz in Fig. 8). This effect of using polarization remaining in the third ¹⁴N energy level was also seen in TNT. Starting with unpolarized ¹H, a field sweep from 0 field to the v_0 level crossings (107 and 96 kHz, 100 ms each) benefits the v_{-} signal at 743 kHz by 40% for a 5 s cycle time. This can be explained as follows. At the v_0 level crossings, the unpolarized ¹H nuclei help to equalize the population of the two states involved in the v_0 transition, $|Y\rangle$ and $|X\rangle$. The v_- signal $(|X\rangle \rightarrow |Z\rangle)$ thus benefits from the polarization of the $|Y\rangle$ state. This technique of using the third ¹⁴N energy level can benefit the ¹⁴N NQR signal, while requiring only a tiny magnetic field (2.5 mT). We should also mention that another possible way to use the polarization of the third ¹⁴N energy level is to apply an inversion pulse or saturation of the v_0 transition, instead of the field sweep to the v_0 level crossings.

In TNT, there are 6 nitrogen sites with different NQR frequencies for each crystalline type (monoclinic and orthorhombic) (see Table 1). The polarization of any one ¹⁴N frequency could potentially be replenished by transfer from other nearby ¹⁴N crystal sites. It is possible for level crossing to happen directly between different ¹⁴N sites, depending on the geometry of the electric field gradient tensors. However, since the ¹⁴N-¹⁴N dipole couplings are small (estimated as ~ 10 Hz in TNT), a direct ¹⁴N-¹⁴N process will be slow at best. Instead, the ¹H can be used to move polarization from one ¹⁴N site to another. We found that a sequence designed to use this process by stopping at the level crossings for other ¹⁴N sites could provide an increase of the signal-to-noise ratio by a factor of 2.1. This sequence started with two magnetic field stops in the vicinity of other ¹⁴N sites (100 ms each at 873 and 880 kHz). Then, there was a 2.3 s stop in the v_+ region of the measured sites (854 kHz). Finally, the field was swept down with 100 ms stops at v_{-} (770 and 715 kHz) and v_{0} level crossings (132, 107, and 93 kHz). The ¹⁴N signal in the 835-855 kHz region was measured at zero field at 843 kHz. However, because of the closely spaced lines of TNT, it is not clear whether the benefit of the additional stops arises from the level crossings of other ¹⁴N sites or just because the stops are also near the level crossings of the measured sites. Measurement of the signal enhancement as a function of the position of a magnetic field stop around v_+ did not resolve the v_+ level crossings of different ¹⁴N sites. The best overall sequence that we found for TNT v_+ signal was as described in the caption of Fig. 9: to match the field to the v_+ level crossing and then stop at the v_{-} and v_{0} level crossings as the field is swept to zero.

5. Conclusions

Small amounts of magnetic field can be produced by a simple solenoid to create and manipulate ¹H polarization in several ways to increase the signal-to-noise ratio of low frequency ¹⁴N NQR. The increase that can be attained depends on a number of factors, including the magnetic field available, the ratio of the T_1 's of ¹H and ¹⁴N, and the number of ¹H nuclei per ¹⁴N nucleus. We have found that the benefit to the signal-to-noise ratio can be significant even for very small magnetic fields, providing much more benefit than a first glance approach of comparing the achievable ¹H frequency to the measured ¹⁴N frequency. In these experiments, we demonstrated an increase of 2.5 in the signal-to-noise ratio for a fixed amount of time for the ¹⁴N site 2 (the slower relaxing site) of diglycine hydrochloride using 26 mT and an increase of 2.2 for the multiple ¹⁴N sites of TNT near 843 kHz using 20 mT.

Acknowledgments

This research was performed while the author held a National Research Council Research Associateship Award at the U.S. Naval Research Laboratory. Funding was provided by the Office of Naval Research (ONR) and the U.S. Army Night Vision Lab. One of us (KLS) would like to acknowledge a NSF ADVANCE award.

References

- A.N. Garroway et al., Remote sensing by nuclear quadrupole resonance, IEEE T. Geosci. Remote 39 (2001) 1108.
- [2] R. Blinc, J. Seliger, D. Arčon, P. Cevc, V. Žagar, H-¹⁴N double resonance of TNT from a land mine, Phys. Stat. Sol. A 180 (2000) 541.
- [3] M. Nolte, A. Privalov, J. Altmann, V. Anferov, F. Fujara, ¹H–¹⁴N cross-relaxation in trinitrotoluene-a step toward improved landmine detection, J. Phys. D: Appl. Phys. 35 (2002) 939.
- [4] V.S. Grechishkin, R.V. Grechishkina, A.A. Shpilevoi, A.A. Persichkin, Hoon Heo, Remote detection of double nuclear quadrupole resonance spectra, Opt. Spectrosc.-USSR 94 (2003) 352.
- [5] R. Blinc, T. Apih, J. Seliger, Nuclear quadrupole double resonance techniques for the detection of explosives and drugs, Appl. Magn. Reson. 25 (2004) 523.
- [6] V.S. Grechishkin, V.P. Anferov, N.Ja. Sinjavsky, Adiabatic demagnetization and two-frequency methods in ¹⁴N quadrupole resonance spectroscopy, in: J.A.S. Smith (Ed.), Advances in Nuclear Quadrupole Resonance, vol. 5, John Wiley, London, 1983, pp. 13–23.
- [7] J. Luznik, J. Pirnat, Z. Trontelj, Polarization enhanced ¹⁴N NQR detection with a nonhomogeneous magnetic field, Solid State Commun. 121 (2002) 653.
- [8] T. Hahn, M.J. Buerger, The crystal structure of diglycine hydrochloride, 2(C₂H₃O₂N) · HCl, Z. Kristallogr. 108 (1957) 419;
 S. Natarajan, C. Muthukrishnan, S. Asath Bahadur, R.K. Rajaram, S.S. Rajan, Reinvestigation of the crystal structure of diglycine hydrochloride, Z. Kristallogr. 198 (1992) 265;
 J.W. Faamau, E.R.T. Tiekink, New data for diglycinehydrochloride, Z. Kristallogr. 204 (1993) 277.
- [9] A. Abragam, Principles of Nuclear Magnetism, Clarendon Press, Oxford, 1961, p. 166.
- [10] D.T. Edmonds, Nuclear quadrupole double resonance, Phys. Rep. 29 (1977) 233.
- [11] D.H. Smith, R.M. Cotts, Nitrogen electric quadrupole and proton magnetic resonances in thiourea, J. Chem. Phys. 41 (1964) 2403.
- [12] G.W. Leppelmeier, E.L. Hahn, Nuclear dipole field quenching of integer spins, Phys. Rev. 141 (1966) 724.
- [13] A. Naito, A. Root, C.A. McDowell, Combined sample rotation and multiple-pulse NMR spectroscopic studies on protons bonded to ¹⁴N nuclei in solid amino acids, J. Phys. Chem. 95 (1991) 3578.
- [14] R.A. Marino, S.M. Klainer, Multiple spin echos in pure quadrupole resonance, J. Chem. Phys. 67 (1977) 3388.

- [15] R.A. Marino, R.F. Connors, L. Leonard, Nitrogen-14 NQR study of energetic materials, U.S. Army report: U.S. NTIS AD-A119844.
- [16] R.A. Marino, R.F. Connors, Orthorhombic and monoclinic TNT: a nitrogen-14 NQR study, J. Mol. Struct. 111 (1983) 323.
- [17] G. Grössl, F. Winter, R. Kimmich, Optimisation of magnet coils for NMR field-cycling experiments, J. Phys. E: Sci. Instrum. 18 (1985) 358.
- [18] D. Stephenson, J.A.S. Smith, ¹⁴N quadrupole double resonance in 2-, 3- and 4-nitrobenzoic acids, J. Chem. Soc., Faraday Trans. 2 83 (1987) 2123.
- [19] V.P. Anferov, S.V. Anferova, V.S. Grechishkin, N.J. Sinjavsky, Method of adiabatic demagnetization in NQR, J. Mol. Struct. 83 (1982) 89.
- [20] V.P. Anferov, V.S. Grechishkin, S.V. Grechishkina, NQR-NMR double resonance, Izv. An. SSSR Fiz. 42 (1978) 2164; V.S. Grechishkin, N.Y. Sinyavskii, Line intensities in NQR-NMR double resonance, Izv. An. SSSR Fiz. 42 (1978) 2176.

- [21] D. Stephenson, J.A.S. Smith, Nitrogen-14 quadrupole crossrelaxation spectroscopy, Proc. R. Soc. Lon. Ser.-A 416 (1988) 149.
- [22] M. Goldman, Spin Temperature and Nuclear Magnetic Resonance in Solids, Clarendon Press, Oxford, 1970, p. 171.
- [23] J.W. Zwanziger, S.P. Rucker, G.C. Chingas, Measuring the geometric component of the transition probability in a two-level system, Phys. Rev. A 43 (1991) 3232.
- [24] A.J. Vega, MAS NMR spin locking of half-integer quadrupolar nuclei, J. Magn. Reson. 96 (1992) 50.
- [25] Diglycine hydrochloride and TNT ¹⁴N NQR T_1 's were measured by the magnetization recovery after a spin-lock spin-echo (SLSE) sequence was used for saturation. Within error, the biexponential behavior possible in spin 1 NQR [26] was not seen for either diglycine hydrochloride site 2 or TNT ¹⁴N NQR T_1 relaxation curves.
- [26] G. Petersen, P.J. Bray, ¹⁴N nuclear quadrupole resonance in sodium nitrite, J. Chem. Phys. 64 (1976) 522.